Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

not(x) → xor(x, true)
implies(x, y) → xor(and(x, y), xor(x, true))
or(x, y) → xor(and(x, y), xor(x, y))
=(x, y) → xor(x, xor(y, true))

Q is empty.


QTRS
  ↳ DirectTerminationProof

Q restricted rewrite system:
The TRS R consists of the following rules:

not(x) → xor(x, true)
implies(x, y) → xor(and(x, y), xor(x, true))
or(x, y) → xor(and(x, y), xor(x, y))
=(x, y) → xor(x, xor(y, true))

Q is empty.

We use [23] with the following order to prove termination.

Lexicographic path order with status [19].
Quasi-Precedence:
not1 > true > xor2
implies2 > true > xor2
implies2 > and2 > xor2
or2 > and2 > xor2
=2 > true > xor2

Status:
true: multiset
and2: [1,2]
or2: [1,2]
implies2: [2,1]
=2: [2,1]
xor2: [1,2]
not1: [1]